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Introduction Sampling in the convex order

L Introduction

The convex order

Let X, Y : Q — R two random variables with respective law x and v.

X is smaller than Y in the convex order if
Vé : R? = R, E[¢p(X)] < E[g(Y)],

for any convex function ¢ such that both expectations exist. In this
case, we write X <. Y or pu <e v.

Strassen’s theorem : (1965) Assume [, |y|v(dy) < oo. p <ex v iff
there exists a martingale kernel Q(x, dy) such that nQ = v, i.e.

J 1(ax)Q(x, dy) = v(dy).

Notation : NM(u, v) = {n(dx, dy) = u(dx)Q(x, dy) : Vx €

RY, [oo [¥|Q(x,dy) < coand [, yQ(x,dy) = x}
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Martingale Optimal Transport in Finance

We assume r = 0. (S;):>0 : price process of d assets. Suppose that
we know for 0 < Ty < T; the law of Sy, and St, (denoted 4 and ),
and that we want to price an option that pays c(Sr,, St,) at time Ty,
with ¢ : R? x R? — R.

Price bounds for the option :

/ c(x, y)m(dx, dy), m € MM(uq, u2) — minimize/ maximize.
RI xR

Multi-marginal case : payoff ¢(Sr,, ..., St,) with ¢ : (R9)" — R.
Beiglbdck, Henry-Labordeére, Penkner (2013) : Duality and connection
with super/subhedging strategies.
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Sampling in the Convex order

When approxmatmg 1 <cx v by discrete measures ) = Z, 1 Pidx;
and vy = 21:1 q;dy, (typically with i.i.d. samples) we may not have
i <cx VJ-

Our goal : to construct ji; (resp. 7y) “close” to p (resp. vy) such that
,al <ex Dy.

Motivation : Numerical methods for Martingale Optimal Transport
(MOT) problems. We can use linear programming solvers to solve :

/

J
DD e, y)

i=1 j=1
under the constraints

>0 Zrlj Cl/azrl/*pland Zrl/y/*plxl

J=1 J=1
Monte-Carlo : calculate together option prices and their bounds.
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L Introduction

Existing methods to approximate measures in the
convex order

Quantization :

@ Dual quantization preserves the convex order in dimension one.
In general, gives a measure © such that v < . (Pagés Wilbertz
2012)

@ Primal quantization gives a measure i such that i <. p.
@ Drawbacks : v and thus i must have a compact support. Only for
2 marginals. Computation time.
Dimension 1 (Baker’s thesis, 2012) : Assume i <. v and let
p=131 6 and 9, =130 .5 :
=72 y D=7 I
T T

ALY
T
Then, we have i, < 7, for any | € N*.
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A first idea : to equalize the means

Supposeu<xy Xi,... X,iid ~upand Yi,..., Y,iid. ~v. We set
= ,Z, 1 Xiand YJ_JZJ 1 Y;, and

i J
. 1 - 1
K= 7 Z(SX,‘-H"—)_(/’ vy = J Z(SY/‘H"—\_’J’
i=1 j=1

with m = [ xu(dx) if it is known explicitly or X; otherwise.
@ Under suitable conditions a.s., IM,VI,J > M, ﬁ, <ox Uy.

e For X; & = exp(0,, G — ) y, 2 exp(o, G — ) with o, = 0.24,
o, =0.28, 1 =100, (,u/SCXV/) 0.45.
= need for a non asymptotic approach.

: :
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Characterization of the convex order in dimension 1
We set Py(R) = {1 € P(R) : [, |x|p(dx) < oo}
For x € R, F,(x) = u((—00,x]), Fu(x) = pu([x, +o0)). For p € (0,1),
F‘1(p) =inf{x e R: F,(x) > p}.

i
For t € R, we define ¢,,(t) = f' F x)dx = [ (t— x)"p(dx) and
Zu(t) = [ Fu(x)ax = fR *p(dx).
Theorem 1
Let u,v € P1(R). The following conditions are equivalent :

(i) p<exv,

(i) [pxu(dx) = [ xv(dx) andVt e R, ¢, (t) < @, (1),

) =
(iii) [z xp(dx) = [p xv(dx) andVt € R, @,(t) < @, (1),
(iv) fo ~(p)dp = fo ~1(p)dp and vq € (0,1) f - (p)dp <
Iy F (p)d.
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Application to discrete random variables

Corollary 2

Lety = Z,{:1 pidx, and v = Z}; q;dy, be two probability measures on
R. Without loss of generality, we assume that x; < --- < Xy,
y1 <---<yyandpip;qiqy > 0. Then we have u < v if, and only if

(i) y1 <xy and yy > xi,
(i) for all j such that x; < y; < X1, 0, (¥}) < 0o (¥)),

(i) Yizy pix; = E}I=1 qyj-

We can replace (i) by
(ii") for all j such that x; < y; < X1, ¢,.(¥) < @u(¥))-
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The increasing/decreasing convex orders

Definition/Proposition : The following statements are equivalent :
(i) p <iex v (resp. 1 <dex V),
(i) Vt € R, Bu() < u(t) (resp. pu(t) < @u(1)),
(i) ¥q € [0.1], J; F'(p)dp < [ F;' (p)dlp (resp.
I3 F ' (p)dp >[5 F; ' (p)ap).
Rk1:p,vePi(R), p<ix v = [ Xpu(dx) < [ xv(dx). Therefore,

w<x vV < pu <ixvand /x;;(dx) = / xv(dx)
R R
= p <iex v and g <gex V.

Rk2:u <gx v < p* <ix v*, Where p*((—o0, X]) := p([—X, +0))
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The lattice structure (Kertz & Rdsler 1992,2000)
(P1(R), <iex) and (P1(R), <qcx) are complete lattices. From
u, v € P1(R), we can define i Vi v and p Aix v such that

1 Niex V <iex M Siex 1 Viex V for ne {M7 V}v
1 Adex V Zdex 1 Ziex 1 Vdaex v forn e {p, v}.

t t t
/ Fruv v (X)dx = max (/ Fu(x)dx,/ F,,(x)dx)
_to<> - _Ioo t
/ Frnger (X)dx = convex hull of min </ F#(x)dx,/ F,,(X)dx>
_+oooo _ +oo _ _oj—oo _ o
/ Fuviw (X)dx = max (/ Fu(x)dx,/ Fl,(x)dx)
t t t

+00 +oo _ +oo _
/ Fyiviow(x)dx = convex hull of min (/ F“(x)dx,/ F,,(x)dx) .
t t t

Rk : We also have [ F!, . (p)dp = min( [, F, " (p)dp, [ F. " (p)dp).
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Application to sampling in the convex order
We define for u, v € P1(R) :

AV =100 a0 < f, xu(d)yH Adex ¥+ 111 xu(an)> [, xu(d) P Niex Vs
NV V=100 a0 < f, xu(anyH Ve V + 101 xu(an)> f, xu(d) i Viex Vs

sothat 4 <¢ Vv and uAv < v. When p and v are discrete with
finite support, these measures can be calculated explicitly (Andrew’s
monotone chain convex hull algorithm).

Proposition 3

(X)iz1 id. ~ . (V))jz1 id. ~ vy = J0x, vy = 30y, As ,J — oo,
wy and py Vv vy (resp. u A vy and vy) converges a.s. weakly to u and v.

Rk : Easy extension to the multi-marginal case.
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The algorithm

Let W,V e P (Rd). ()(,'),'21 ii.d, ~ Jiz (Yj)j21 ii.d. ~ . Wy = 175)(,.,
vy = 5(Syj. We consider the following minimization problem :

2
minimize § Y"1, |Xi - 2,4:1 qiYj
under the constraints Vi, j, g; > 0, Vi, 27:1 gy =1andVj, iy g5 = J:

This is a quadratic minimization under linear constraints :
@ There exists a minimizer q,.

® i havy =131 05, with X = 37 (q.);Y] is uniquely defined,
and satisfy

i A2 Vg <ex V4.
@ Efficient solvers already exist.
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Generalization of the problem : Wasserstein projection
First generalization For a Markov kernel Q(x, dy), we set
mq(x) = [re YQ(X, dy). For p > 1 and p,v € P,(RY),

Minimize 7,(Q) = [gq [X — Ma(x)[*1(dx)
under the constraint that Q is a Markov kernel such that uQ = v

Second generalization : Let M(u,n) = {7 €
P(RY x Rd),fyeRdw(dx, dy) = p(dx), [, cga m(dx, dy) = n(dy).

1/p
W = (ot [ x-ypeanay)
RY xR

meN(w,n)

Under suitable conditions (1w absolutely continuous), 3T : RY — RY,
T#pu=mnand W/ (u,n) = [ga |x — T(X)[?u(dX).

Minimize W,f’(/M?) under the constraint n <¢x v — p A, v 1= 1n".
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Main result & definition of ;1 A, v

Proposition 4
Letp > 1, u,v € P,(RY). One has

Q:Lrg:l/ jP(Q) - n:Ti’rS]fch pr(ﬂa 77)7
where both infima are attained. If p > 1, then the functions

{mq, : pQ, =vand J,(Q.) =infq.a-, J,(Q)} are uu(dx) a.e. equal,
WA vi= Mg #u = n* is the unique n <¢ v minimizing W (u,n) and
p(AX)dmq, (x)(dy) the unique optimal transport plan 7 € N(, 1 A, v)
such that WE (p, 1 Ay v) = [a g IX = y[Pm(dx, dy).

:
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Estimate on the approximation
Proposition 5

Letp > 1, p,v, s, vy € P,(RY) such that u <cx v. Then, we have

Wp(Ma i Ap vy) < 2Wp(:“v/‘l) + Wp(V’ vy).

@ For ()(,'),'21 ii.d. ~ I, (Y/’)j21 ii.d. ~ v, Wp(u, ,U,/) + Wp(l/, V/) /jo 0.
e Fournier Guillin (2015) : if [, €*I“v(dx) < oo for some a > p

1
andy >0, W,(u, 1 Apvy) e o ((%@—Jl) dv(zp)) ,a.s..
@ Multi-marginal case : for 1} , ..., i}, approximations of
,M1 <ex o <ex IJJZ : HL Ap (.- (Mi__: A l‘f,e)) <ex o Sex M%e and
£—1
Wi (5, 1 g (™ i) <2 57 Wikl )4 Wi (1, ).
K —k

:
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Proof of Proposition 5.

Qf, (resp. Q7) : Markov kernel such that 1/ Qf, = (resp. vQF = vy) is
optimal for W, (s, 1) (resp. W, (v, vy)). Let R(x, dy) be a martingale kernel
such that v = pR. Since Qf,RQY is a Markov kernel s.t.

w QS RQE = pRQY = vQL = vy we get

Tl

P
u/(dX)) (mg.)

1
Wolpp, up Ap vy) < JpP (Oﬁlnoﬁ) = (/ / xX—w+2z— y)Ozl(x, dw)R(w, dz)QP(z, dy)
RA [JRA xRI xRD

1/p
< (/ [x —w+z—y|P QP (x,dw)R(w, dz)QF(z, dy)u,(dx)> (Jensen)
i v
RY xRA x RA x RD

1/p 1/p
< (/ |x — w\pozl(x, dw)ul(dx)> + (/ |z — y|Pv(d2)@f (2, dy)) (Minkowski)
RY xR RA xR

= Wp(pp, 1) + Wplvy, v).

The claim follows since W, (p, p1 Ap vg) < W, pr) + W, g Ap vy).

:
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Definition of 1 Y, v

“Dual” problem :
find n € P,(R?) such that p <cx n that minimizes W, (n, v).

Proposition 6

Forp > 1, if p,v € P,(RY), theninf,..<., W¢(v,n) is attained by
some probability measure . Y , n which is unique when v is
absolutely continuous with respect to the Lebesgue measure or
d=1.Ifp>1and p,v,u,vy € P,(RY), then

p<ex v = W,(ui Y, vy,v) < Wo(p, i) + 2W, (v, vy).

Property : W,(n Y, v,v) = W,(u, p A, v, ) and there exists an
optimal transport map between Y, v and v.
e /1 Yo v a priori less easy to calculate numerically than p Ao v.

Aurélien Alfonsi (Ecole des Ponts) ~ October 15, 2017 20/37



Sampling in the convex orde
L - ) -
Sampling in the convex order in higher dimensions Sampling in the convex order in higher dimensions

Back in dimension 1

Proposition 7

Let u,v € P1(R). Let ) denote the convex hull (largest convex
function bounded from above by) of the function

[0,1]5 g+ [, F;'(p) — F, ' (p)dp. Then, there exists probability
measures i A v and p Y v such that for all q € [0, 1],

/ p)db = /F p)ab — (a),
/ 1 (p)dp = /F p)do+ ().

Moreover, 11 Y, v = Y v for each p > 1 such that i, v € P,(R).

Rk : For discrete probability measures p and v, ¢ (and thus ¢ A v and
1 Y v) can be calculated explicitly.
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L Numerical results

Convergence in Wasserstein distance W-

-05— 05—
-1.0 PR -1.0

4t r i
—15 .'::+ 15 * * s

i, e,

-2.0 'ﬁ:t% -2.0 0 i,
-25 \'\m -25 \\ﬂ-\
-3.0 -3.0
-35 -35
-4.0 -4.0
-4.5 -4.5
-0 6 7 8 0 0 5 3 7 B 9 10

log(W2) in function of log(/). Right : Wa (e, i A vy), Wa(pe, pu A vy),
Wo (v, v ) and Wa (v, Y 1), Left : same with “tilde” measures.

p=N(0,1), v =N(0,1.1), p =3 31 ox, v = 1 iy 0w, Xi = 1 1, X,

v 1 ! o~ 1 ! _ ~ 1 ! _
Yi= 2 i Y hu= 72 i 0x_xand =735 6y _y,
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An example with explicit MOT
Let p > 2, u(dx) = 31;_1,1(x)dx and v(ax) = ;1[_2.2(x)dx. We
consider the following MOT problem :

min — x|Px(dx, dy).
reM(u,v) /RXR =Xl )
@ For any 7 € M"(u, v), we have

Jaxr Y — XPm(dx, dy) = [, y2v(dy) — [ X2u(dx) = 1. For p > 2,
Jensen’s inequality gives

/ |y—x|ﬂw(dx,dy)z</ |y—x|2w(dx,dy)) 1.
RxR RxR

@ We observe that

(0, dy) = 110 2T (W) g

achieves this lower bound.
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MOT for (u A vy, vy) (left) and (g, gy V vy) (right)

C(x,y) = [x-y|~{2.3}

Inf Sup
.l
«
1.5 / 1.5
@O
1.0 f‘- 1.0 f'
0.5 0.5
0.0 0.0
4 4
-0.5 -0.5
. °
-1.0 -1.0
15 -15
2.0 -2.0

I=100. u = 131, 6, vy = 3 321, by, Points with positive probability in

the optimal coupling.
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MOT for (ji; A 7y, 7)) (left) and (fiy, fiy vV 7y) (right)

Clxy) = [x-y|~{2.3}

Inf Sup
15 1 15
L S =
- -
0.5 1 0.5
0.0 0.0
o L ” L]
Cd Cl
-0.5 - 4 -0.5 -
. -
-1.0 1 -10
-15 1 -15
2.0 . . . -2.0 . . .
-0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0

1=100. X, =33 X, Yi= 130, Vi ju= 331, 0x_x and

~ 1 1 _
vVi=7 D ie 5\/,-4/,
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Comparison on the costs

/ = 100. We have run 100 times the discrete MOT and calculated
means and standard deviations of the cost (Optimal cost 1 for the
continous MOT) :

(i A v vp)

(e, p V vy)

(i N Dy, D)

(fir, fu V o)

mean

0.7506

0.7319

1.002

1.002

std. dev.

0.2148

0.2148

0.14

0.14

@ Few differences between (u; A vy, vp) and (uy, py V vy).
@ Equalizing the means really improves the approximation.
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Another numerical example

We consider again the following MOT problem :

min [y~ xpa(axdy),
RxR

meMM(p,v)

with p (resp. v) being the law of exp (oxG — 30%) — 1 (resp.
exp (oyG — 30%) — 1), with G ~ N(0,1), ox = 0.24 and oy = 0.28.
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MOT for (jis A 7y, &) (left p

=21, right p =1.9)

C(x,y) = |x-y|~rho
rho=2.1 rho=1.9
2.5 2.5
L] e e s, L] L]
2.0 ”e 2.0 L] L
15 15
. o L] L]
- e o o
1.0 - 1.0 o0
ool e L
os Iy . os .
' 4 o ' v
0.0 / / 0.0 }
o
-0.5 -0.5

1=100. X, = 1,2::1 X, Y, = 172:{:1

~ 1 1 _
vVi=7 D ie 5\/,-4/,

-0.5 0.0 0.5 1.0 1.5 2.0

Yi, i = 1/2:{:1 dx,_x, and
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MOT for (iip A Dy, 0p) (left p = 2.1, right p = 1.9)

Clxy) = |x-y|~rho

rho=2.1 rho=1.9
3.0 3.0
2.5 2.5
2.0 e o 2.0 amr
eee Lo .
1.5 1.5
L 1) - e o
- L] e e
- oo
1.0 - 1.0 ’go
L] ° '
0.5 ot 0.5
oo°
0.0 0.0
-0.5 -0.5

-0.5 0.0 0.5 1.0 15

Baker : iy = + 20,6

I =100, / = 10000.

i
7 g1
! i71 Fﬁ//\

L.
2.0 -0.5 0.0

779/’:/172

(u)du

]

14
i=

0.5 1.0 1.5 2.0

1 L :
7 —1
I, F”/ (u)du

I/
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Comparison of the std deviation on the first example

On 100 independent runs.
@ /=100 (fi; A 7y, 7). Mean : 1.002, Std. dev. : 0.14.

~ 1 4 ~ 1 4 .
.,U,I/:I—,ZI15 ,U//:I—,Zi71(s ,Wlth

rfr 1F;IAVI( Yau oyl 1F;I1(u)du

I'=100, | = 10000 Mean : 0.9981, Std dev. : 00148
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An example with three marginals

o Laws: X- D exp (0xG— 102) -1, ¥, L exp (oyG— }02) —1

and Z, = exp (UyG UY) —1, with G~ N(0,1), ox = 0.24,
oy =0.28, 0z = 0.32.
@ Payoff/cost function : c(x, y, z) = (z — *5X)*.
@ BS price~ 0.0681, lower bound : 0.0303, upper bound 0.0856
obtained with (g, oy, fr) (I = 2500 and I' = 25).
@ Minimize/maximize ,
>

i=1 j

K
> rwe(xi, i, 2)

1 k=1

M-

under the constraints

e

K I K 1y
VisjoK fje >0, Vi D S e =iy Vis Y > fk = G YK, > > T = Sk,
i=1 k=1 =t =

1 k=1

J
J K K

Vi, D> rw(y = x) =0, Vi j, > rx(zx — ) = 0.

j=1 k=1 k=1

with 1 = 3°1_ pidy;, v = 327, g6y, and = SK | sk6z, satisfying p <ex v <ox 7.
—— L i L -
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An example in dimension 2

@ (G', G?) : centered Gaussian vector with covariance matrix

05 0.1
X= [0.1 o.1]'

@ 4 :law of (X', X?) with X¢ = exp(G’ — X4,/2), ¢ € {1,2}.

@ v:lawof (Y7, Y2) with Y = exp(V2G' — Xy), £ € {1,2}.

@ Payoff/cost function : max(Y' — X', Y2 — X2,0) (best
performance if positive).

° =151, O 1K) X2 1-X2)s VI = Dy (VI +1-¥] V2 +1-72)

@ BS pricex 0.345, lower bound (on 100 indep runs) : mean

0.2293 (std. dev 0.0848), upper bound mean 0.4111 (std. dev
0.1422), obtained with (fi; A2 7y, &), I = 100.
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Numerical results

Conclusion

@ The methods that we have presented, enable to calculate with a
MC method at the same time option prices, and their bounds on
all other models sharing the same marginal laws.

@ The accuracy of the price bounds (maybe not so important in
practice) is limited by the dimension of the linear programming
problem.

@ A possible direction is to develop approximated linear
programming solvers (Benamou, Carlier, Cuturi, Nenna, 2015 in
the OT case).
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