

Sampling of probability measures in the convex order and approximation of Martingale Optimal Transport problems

Aurélien Alfonsi

CERMICS, Ecole des Ponts, Paris-Est University Joint work with Jacopo Corbetta and Benjamin Jourdain

Jim Gatheral's conference, NY

October 15, 2017

Structure of the talk

- Introduction
- The dimension 1 case
- 3 Sampling in the convex order in higher dimensions
- 4 Numerical results

The convex order

Let $X, Y : \Omega \to \mathbb{R}^d$ two random variables with respective law μ and ν . X is smaller than Y in the convex order if

$$\forall \phi : \mathbb{R}^d \to \mathbb{R}, \ \mathbb{E}[\phi(X)] \le \mathbb{E}[\phi(Y)],$$

for any convex function ϕ such that both expectations exist. In this case, we write $X \leq_{\mathsf{cx}} Y$ or $\mu \leq_{\mathsf{cx}} \nu$.

Strassen's theorem : (1965) Assume $\int_{\mathbb{R}^d} |y| \nu(dy) < \infty$. $\mu \le_{\text{cx}} \nu$ iff there exists a martingale kernel Q(x, dy) such that $\mu Q = \nu$, i.e. $\int \mu(dx) Q(x, dy) = \nu(dy)$.

Notation:
$$\Pi^{M}(\mu, \nu) = \{\pi(dx, dy) = \mu(dx)Q(x, dy) : \forall x \in \mathbb{R}^{d}, \int_{\mathbb{R}^{d}} |y|Q(x, dy) < \infty \text{ and } \int_{\mathbb{R}^{d}} yQ(x, dy) = x\}$$

Martingale Optimal Transport in Finance

We assume r=0. $(S_t)_{t\geq 0}$: price process of d assets. Suppose that we know for $0< T_1 < T_2$ the law of S_{T_1} and S_{T_2} (denoted μ_1 and μ_2), and that we want to price an option that pays $c(S_{T_1}, S_{T_2})$ at time T_2 , with $c: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$.

Price bounds for the option:

$$\int_{\mathbb{R}^d \times \mathbb{R}^d} c(x,y) \pi(dx,dy), \pi \in \Pi^M(\mu_1,\mu_2) \to \textit{minimize}/\textit{maximize}.$$

Multi-marginal case : payoff $c(S_{\mathcal{T}_1},\ldots,S_{\mathcal{T}_n})$ with $c:(\mathbb{R}^d)^n\to\mathbb{R}$. Beiglböck, Henry-Labordère, Penkner (2013) : Duality and connection with super/subhedging strategies.

Sampling in the Convex order

When approximating $\mu \leq_{cx} \nu$ by discrete measures $\mu_I = \sum_{i=1}^{I} p_i \delta_{x_i}$ and $\nu_J = \sum_{i=1}^J q_i \delta_{y_i}$ (typically with i.i.d. samples) we may not have $\mu_I <_{\mathsf{cx}} \nu_{I}$.

Our goal : to construct $\tilde{\mu}_I$ (resp. $\tilde{\nu}_I$) "close" to μ_I (resp. ν_I) such that $\tilde{\mu}_I <_{\mathsf{CX}} \tilde{\nu}_{I}$.

Motivation: Numerical methods for Martingale Optimal Transport (MOT) problems. We can use linear programming solvers to solve :

$$\sum_{i=1}^{I}\sum_{j=1}^{J}r_{ij}c(x_i,y_j)$$

under the constraints

$$r_{ij} \ge 0$$
, $\sum_{i=1}^{I} r_{ij} = q_j$, $\sum_{i=1}^{J} r_{ij} = p_i$ and $\sum_{j=1}^{J} r_{ij} y_j = p_i x_i$.

Monte-Carlo: calculate together option prices and their bounds.

Existing methods to approximate measures in the convex order

Quantization:

- Dual quantization preserves the convex order in dimension one. In general, gives a measure $\hat{\nu}$ such that $\nu \leq_{\mathsf{cx}} \hat{\nu}$. (Pagès Wilbertz 2012)
- Primal quantization gives a measure $\hat{\mu}$ such that $\hat{\mu} \leq_{cx} \mu$.
- Drawbacks : ν and thus μ must have a compact support. Only for 2 marginals. Computation time.

Dimension 1 (Baker's thesis, 2012) : Assume $\mu \leq_{cx} \nu$ and let

$$\hat{\mu}_{I} = \frac{1}{I} \sum_{i=1}^{I} \delta_{I \int_{\frac{i-1}{I}}^{\frac{i}{I}} F_{\mu}^{-1}(u) du} \text{ and } \hat{\nu}_{I} = \frac{1}{I} \sum_{i=1}^{I} \delta_{I \int_{\frac{i-1}{I}}^{\frac{i}{I}} F_{\nu}^{-1}(u) du}.$$

Then, we have $\hat{\mu}_I <_{\mathsf{cx}} \hat{\nu}_I$ for any $I \in \mathbb{N}^*$.

A first idea : to equalize the means

Suppose $\mu \leq_{cx} \nu$, X_1, \ldots, X_l i.i.d. $\sim \mu$ and Y_1, \ldots, Y_J i.i.d. $\sim \nu$. We set $\bar{X}_{i} = \frac{1}{i} \sum_{i=1}^{I} X_{i}$ and $\bar{Y}_{J} = \frac{1}{i} \sum_{i=1}^{J} Y_{i}$, and

$$\tilde{\mu}_I = \frac{1}{I} \sum_{i=1}^I \delta_{X_i + m - \bar{X}_i}, \ \tilde{\nu}_J = \frac{1}{J} \sum_{j=1}^J \delta_{Y_j + m - \bar{Y}_J},$$

with $m = \int x \mu(dx)$ if it is known explicitly or \bar{X}_l otherwise.

- Under suitable conditions, a.s., $\exists M, \forall I, J > M, \tilde{\mu}_I <_{cx} \tilde{\nu}_J$.
- For $X_1 \stackrel{law}{=} exp(\sigma_{\mu}G \frac{\sigma_{\mu}^2}{2})$, $Y_1 \stackrel{law}{=} exp(\sigma_{\nu}G \frac{\sigma_{\nu}^2}{2})$ with $\sigma_{\mu} = 0.24$, $\sigma_{\nu} = 0.28, I = 100, \mathbb{P}(\bar{\tilde{\mu}}_{I} <_{cx} \tilde{\nu}_{I}) \approx 0.45.$ ⇒ need for a non asymptotic approach.

- Introduction
- 2 The dimension 1 case
- Sampling in the convex order in higher dimensions
- 4 Numerical results

Characterization of the convex order in dimension 1

We set
$$\mathcal{P}_1(\mathbb{R}) = \{ \mu \in \mathcal{P}(\mathbb{R}) : \int_{\mathbb{R}} |x| \mu(dx) < \infty \}.$$

For
$$x \in \mathbb{R}$$
, $F_{\mu}(x) = \mu((-\infty, x])$, $\overline{F}_{\mu}(x) = \mu([x, +\infty))$. For $p \in (0, 1)$, $F_{\mu}^{-1}(p) = \inf\{x \in \mathbb{R} : F_{\mu}(x) > p\}$.

For
$$t \in \mathbb{R}$$
, we define $\varphi_{\mu}(t) = \int_{-\infty}^{t} F_{\mu}(x) dx = \int_{\mathbb{R}} (t-x)^{+} \mu(dx)$ and $\bar{\varphi}_{\mu}(t) = \int_{t}^{+\infty} \bar{F}_{\mu}(x) dx = \int_{\mathbb{R}} (x-t)^{+} \mu(dx)$.

Theorem 1

Let $\mu, \nu \in \mathcal{P}_1(\mathbb{R})$. The following conditions are equivalent :

- (i) $\mu \leq_{\mathsf{cx}} \nu$,
- (ii) $\int_{\mathbb{R}} x \mu(dx) = \int_{\mathbb{R}} x \nu(dx)$ and $\forall t \in \mathbb{R}, \varphi_{\mu}(t) \leq \varphi_{\nu}(t)$,
- (iii) $\int_{\mathbb{R}} x \mu(dx) = \int_{\mathbb{R}} x \nu(dx)$ and $\forall t \in \mathbb{R}, \bar{\varphi}_{\mu}(t) \leq \bar{\varphi}_{\nu}(t)$,
- (iv) $\int_0^1 F_{\mu}^{-1}(p) dp = \int_0^1 F_{\nu}^{-1}(p) dp$ and $\forall q \in (0,1), \int_q^1 F_{\mu}^{-1}(p) dp \le \int_q^1 F_{\nu}^{-1}(p) dp$.

Application to discrete random variables

Corollary 2

Let $\mu = \sum_{i=1}^{I} p_i \delta_{x_i}$ and $\nu = \sum_{j=1}^{J} q_j \delta_{y_j}$ be two probability measures on \mathbb{R} . Without loss of generality, we assume that $x_1 < \cdots < x_I$, $y_1 < \cdots < y_J$ and $p_1 p_I q_1 q_J > 0$. Then we have $\mu \leq_{\mathsf{cx}} \nu$ if, and only if

- (i) $y_1 \leq x_1$ and $y_J \geq x_I$,
- (ii) for all j such that $x_1 \leq y_j \leq x_l$, $\varphi_{\mu}(y_j) \leq \varphi_{\nu}(y_j)$,
- (iii) $\sum_{i=1}^{I} p_i x_i = \sum_{j=1}^{J} q_j y_j$.

We can replace (ii) by

(ii') for all j such that $x_1 \leq y_j \leq x_l$, $\bar{\varphi}_{\mu}(y_j) \leq \bar{\varphi}_{\nu}(y_j)$.

The increasing/decreasing convex orders

Numerical results

Definition/Proposition: The following statements are equivalent:

- (i) $\mu \leq_{\mathsf{icx}} \nu$ (resp. $\mu \leq_{\mathsf{dcx}} \nu$),
- (ii) $\forall t \in \mathbb{R}, \, \bar{\varphi}_{\mu}(t) \leq \bar{\varphi}_{\nu}(t) \; (\text{resp. } \varphi_{\mu}(t) \leq \varphi_{\nu}(t)),$
- (iii) $\forall q \in [0, 1], \int_q^1 F_{\mu}^{-1}(p) dp \leq \int_q^1 F_{\nu}^{-1}(p) dp$ (resp. $\int_0^q F_{\mu}^{-1}(p) dp \geq \int_0^q F_{\nu}^{-1}(p) dp$).

Rk 1: $\mu, \nu \in \mathcal{P}_1(\mathbb{R}), \ \mu \leq_{\text{icx}} \nu \implies \int_{\mathbb{R}} x \mu(dx) \leq \int_{\mathbb{R}} x \nu(dx)$. Therefore,

$$\mu \leq_{\mathsf{cx}} \nu \iff \mu \leq_{\mathsf{icx}} \nu \text{ and } \int_{\mathbb{R}} x \mu(\mathit{d} x) = \int_{\mathbb{R}} x \nu(\mathit{d} x)$$
 $\iff \mu \leq_{\mathsf{icx}} \nu \text{ and } \mu \leq_{\mathsf{dcx}} \nu.$

Rk 2 : $\mu \leq_{\mathsf{dcx}} \nu \iff \mu^* \leq_{\mathsf{icx}} \nu^*$, where $\mu^*((-\infty, x]) := \mu([-x, +\infty))$

The lattice structure (Kertz & Rösler 1992,2000)

 $(\mathcal{P}_1(\mathbb{R}), \leq_{icx})$ and $(\mathcal{P}_1(\mathbb{R}), \leq_{dcx})$ are complete lattices. From $\mu, \nu \in \mathcal{P}_1(\mathbb{R})$, we can define $\mu \vee_{icx} \nu$ and $\mu \wedge_{icx} \nu$ such that

$$\begin{split} & \mu \wedge_{\mathrm{icx}} \nu \leq_{\mathrm{icx}} \eta \leq_{\mathrm{icx}} \mu \vee_{\mathrm{icx}} \nu \text{ for } \eta \in \{\mu, \nu\}, \\ & \mu \wedge_{\mathrm{dcx}} \nu \leq_{\mathrm{dcx}} \eta \leq_{\mathrm{icx}} \mu \vee_{\mathrm{dcx}} \nu \text{ for } \eta \in \{\mu, \nu\}. \end{split}$$

$$\begin{split} &\int_{-\infty}^t F_{\mu \vee_{\mathrm{dcx} \nu}}(x) dx = \max \left(\int_{-\infty}^t F_{\mu}(x) dx, \int_{-\infty}^t F_{\nu}(x) dx \right) \\ &\int_{-\infty}^t F_{\mu \wedge_{\mathrm{dcx} \nu}}(x) dx = \text{convex hull of } \min \left(\int_{-\infty}^t F_{\mu}(x) dx, \int_{-\infty}^t F_{\nu}(x) dx \right) \\ &\int_t^{+\infty} \bar{F}_{\mu \vee_{\mathrm{icx} \nu}}(x) dx = \max \left(\int_t^{+\infty} \bar{F}_{\mu}(x) dx, \int_t^{+\infty} \bar{F}_{\nu}(x) dx \right) \\ &\int_t^{+\infty} \bar{F}_{\mu \vee_{\mathrm{icx} \nu}}(x) dx = \text{convex hull of } \min \left(\int_t^{+\infty} \bar{F}_{\mu}(x) dx, \int_t^{+\infty} \bar{F}_{\nu}(x) dx \right). \end{split}$$

Rk: We also have $\int_0^q F_{\mu \wedge_{\rm dex} \nu}^{-1}(p) dp = \min(\int_0^q F_{\mu}^{-1}(p) dp, \int_0^q F_{\nu}^{-1}(p) dp)$.

Application to sampling in the convex order

We define for $\mu, \nu \in \mathcal{P}_1(\mathbb{R})$:

$$\mu \wedge \nu = \mathbf{1}_{\{\int_{\mathbb{R}} x \mu(dx) \leq \int_{\mathbb{R}} x \nu(dx)\}} \mu \wedge_{dcx} \nu + \mathbf{1}_{\{\int_{\mathbb{R}} x \mu(dx) > \int_{\mathbb{R}} x \nu(dx)\}} \mu \wedge_{icx} \nu,$$

$$\mu \vee \nu = \mathbf{1}_{\{\int_{\mathbb{R}} x \mu(dx) \leq \int_{\mathbb{R}} x \nu(dx)\}} \mu \vee_{dcx} \nu + \mathbf{1}_{\{\int_{\mathbb{R}} x \mu(dx) > \int_{\mathbb{R}} x \nu(dx)\}} \mu \vee_{icx} \nu,$$

so that $\mu \leq_{\mathsf{cx}} \mu \lor \nu$ and $\mu \land \nu \leq_{\mathsf{cx}} \nu$. When μ and ν are discrete with finite support, these measures can be calculated explicitly (Andrew's monotone chain convex hull algorithm).

Proposition 3

$$(X_i)_{i\geq 1}$$
 i.i.d. $\sim \mu$. $(Y_j)_{j\geq 1}$ i.i.d. $\sim \nu$. $\mu_I = \frac{1}{I}\delta_{X_i}$, $\nu_J = \frac{1}{J}\delta_{Y_j}$ As $I, J \to \infty$, μ_I and $\mu_I \lor \nu_J$ (resp. $\mu_I \land \nu_J$ and ν_J) converges a.s. weakly to μ and ν .

Rk: Easy extension to the multi-marginal case.

Sampling in the convex order in higher dimensions

- Introduction
- 2 The dimension 1 case
- Sampling in the convex order in higher dimensions
- 4 Numerical results

The algorithm

Let $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^d)$. $(X_i)_{i \geq 1}$ i.i.d. $\sim \mu$. $(Y_j)_{j \geq 1}$ i.i.d. $\sim \nu$. $\mu_I = \frac{1}{I} \delta_{X_i}$, $\nu_J = \frac{1}{J} \delta_{Y_j}$. We consider the following minimization problem :

$$\begin{cases} \text{minimize } \frac{1}{l} \sum_{i=1}^{l} \left| X_i - \sum_{j=1}^{J} q_{ij} Y_j \right|^2 \\ \text{under the constraints } \forall i, j, \ q_{ij} \geq 0, \ \forall i, \ \sum_{j=1}^{J} q_{ij} = 1 \ \text{and} \ \forall j, \ \sum_{i=1}^{l} q_{ij} = \frac{l}{J}. \end{cases}$$

This is a quadratic minimization under linear constraints :

- There exists a minimizer q_{*}.
- $\mu_I \curlywedge_2 \nu_J = \frac{1}{I} \sum_{i=1}^I \delta_{\tilde{X}_i}$, with $\tilde{X}_i = \sum_{j=1}^J (q_\star)_{ij} Y_j$ is uniquely defined, and satisfy

$$\mu_I \downarrow_2 \nu_J \leq_{\mathsf{CX}} \nu_J$$

Efficient solvers already exist.

Generalization of the problem: Wasserstein projection

First generalization : For a Markov kernel Q(x, dy), we set $m_Q(x) = \int_{\mathbb{R}^d} y Q(x, dy)$. For $\rho \ge 1$ and $\mu, \nu \in \mathcal{P}_{\rho}(\mathbb{R}^d)$,

$$\begin{cases} \text{Minimize } \mathcal{J}_{\rho}(Q) := \int_{\mathbb{R}^d} |x - m_Q(x)|^{\rho} \mu(dx) \\ \text{under the constraint that } Q \text{ is a Markov kernel such that } \mu Q = \nu \end{cases}$$

Second generalization : Let $\Pi(\mu, \eta) = \{\pi \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d), \int_{y \in \mathbb{R}^d} \pi(dx, dy) = \mu(dx), \int_{x \in \mathbb{R}^d} \pi(dx, dy) = \eta(dy).$

$$W_{
ho}(\mu,\eta) = \left(\inf_{\pi \in \Pi(\mu,\eta)} \int_{\mathbb{R}^d imes \mathbb{R}^d} |x-y|^{
ho} \pi(dx,dy)
ight)^{1/
ho}.$$

Under suitable conditions (μ absolutely continuous), $\exists T : \mathbb{R}^d \to \mathbb{R}^d$, $T\#\mu = \eta$ and $W^\rho_\rho(\mu, \eta) = \int_{\mathbb{R}^d} |x - T(x)|^\rho \mu(dx)$.

Minimize $W^{\rho}_{\rho}(\mu, \eta)$ under the constraint $\eta \leq_{\mathsf{cx}} \nu \to \mu \curlywedge_{\rho} \nu := \eta^{\star}$.

Main result & definition of $\mu \curlywedge_{\rho} \nu$

Proposition 4

Let $\rho \geq 1$, $\mu, \nu \in \mathcal{P}_{\rho}(\mathbb{R}^d)$. One has

$$\inf_{Q:\mu Q=
u} \mathcal{J}_{
ho}(Q) = \inf_{\eta:\eta \leq_{\mathsf{cx}}
u} W^{
ho}_{
ho}(\mu,\eta),$$

where both infima are attained. If $\rho > 1$, then the functions $\{m_{Q_\star}: \mu Q_\star = \nu \text{ and } \mathcal{J}_\rho(Q_\star) = \inf_{Q:\mu Q=\nu} \mathcal{J}_\rho(Q)\}$ are $\mu(dx)$ a.e. equal, $\mu \curlywedge_\rho \nu := m_{Q_\star} \# \mu = \eta^\star$ is the unique $\eta \leq_{\mathsf{CX}} \nu$ minimizing $W^\rho_\rho(\mu,\eta)$ and $\mu(dx) \delta_{m_{Q_\star}(x)}(dy)$ the unique optimal transport plan $\pi \in \Pi(\mu,\mu \curlywedge_\rho \nu)$ such that $W^\rho_\rho(\mu,\mu \curlywedge_\rho \nu) = \int_{\mathbb{R}^d \times \mathbb{R}^d} |x-y|^\rho \pi(dx,dy)$.

Sampling in the convex order in higher dimensions

Estimate on the approximation

Proposition 5

Let $\rho \geq 1$, $\mu, \nu, \mu_I, \nu_J \in \mathcal{P}_{\rho}(\mathbb{R}^d)$ such that $\mu \leq_{cx} \nu$. Then, we have

$$W_{\rho}(\mu, \mu_I \curlywedge_{\rho} \nu_J) \leq 2W_{\rho}(\mu, \mu_I) + W_{\rho}(\nu, \nu_J).$$

- For $(X_i)_{i\geq 1}$ i.i.d. $\sim \mu$, $(Y_j)_{j\geq 1}$ i.i.d. $\sim \nu$, $W_{\rho}(\mu,\mu_I) + W_{\rho}(\nu,\nu_I) \underset{l\to 0}{\rightarrow} 0$.
- Fournier Guillin (2015) : if $\int_{\mathbb{R}^d} e^{\gamma |x|^{\alpha}} \nu(dx) < \infty$ for some $\alpha > \rho$ and $\gamma > 0$, $W_{\rho}(\mu, \mu_I \curlywedge_{\rho} \nu_J) = \bigcup_{I,J \to +\infty} \mathcal{O}\left(\left(\frac{\log(I \land J)}{I \land J}\right)^{\frac{1}{d \lor (2\rho)}}\right)$, a.s..
- Multi-marginal case : for $\mu_{l_1}^1,\ldots,\mu_{l_\ell}^\ell$ approximations of $\mu^1 \leq_{\mathsf{cx}} \cdots \leq_{\mathsf{cx}} \mu^\ell : \mu_{l_1}^1 \downarrow_{\rho} (\ldots (\mu_{l_{\ell-1}}^{\ell-1} \downarrow \mu_{l_\ell}^\ell)) \leq_{\mathsf{cx}} \cdots \leq_{\mathsf{cx}} \mu_{l_\ell}^\ell$ and

$$W_{\rho}(\mu^{k},\mu^{k}_{l_{k}} \curlywedge_{\rho}(\cdots \curlywedge_{\rho}(\mu^{\ell-1}_{l_{\ell-1}} \curlywedge_{\rho}\mu^{\ell}_{l_{\ell}}))) \leq 2 \sum_{k'=k}^{\ell-1} W_{\rho}(\mu^{k'},\mu^{k'}_{l_{k'}}) + W_{\rho}(\mu^{\ell},\mu^{\ell}_{l_{\ell}}).$$

Sampling in the convex order in higher dimensions

Proof of Proposition 5.

 $Q_{\mu_I}^{\rho}$ (resp. Q_{ν}^{ρ}): Markov kernel such that $\mu_I Q_{\mu_I}^{\rho} = \mu$ (resp. $\nu Q_{\nu}^{\rho} = \nu_J$) is optimal for $W_{\rho}(\mu_I, \mu)$ (resp. $W_{\rho}(\nu, \nu_J)$). Let R(x, dy) be a martingale kernel such that $\nu = \mu R$. Since $Q_{\mu_I}^{\rho} R Q_{\nu}^{\rho}$ is a Markov kernel s.t. $\mu_I Q_{\nu_I}^{\rho} R Q_{\nu}^{\rho} = \mu R Q_{\nu}^{\rho} = \nu_J$ we get

$$\begin{split} W_{\rho}(\mu_{I},\,\mu_{I}\,\curlywedge_{\rho}\,\nu_{J}) &\leq \,\mathcal{J}^{\frac{1}{\rho}}_{\rho}(Q^{\rho}_{\mu_{I}}RQ^{\rho}_{\nu}) = \left(\int_{\mathbb{R}^{d}}\left|\int_{\mathbb{R}^{d}\times\mathbb{R}^{d}\times\mathbb{R}^{d}}(x-w+z-y)Q^{\rho}_{\mu_{I}}(x,\,dw)R(w,\,dz)Q^{\rho}_{\nu}(z,\,dy)\right|^{\rho}\,\mu_{I}(dx)\right)^{\frac{1}{\rho}} \;(\text{mg.}) \\ &\leq \left(\int_{\mathbb{R}^{d}\times\mathbb{R}^{d}\times\mathbb{R}^{d}\times\mathbb{R}^{d}}|x-w+z-y|^{\rho}\,Q^{\rho}_{\mu_{I}}(x,\,dw)R(w,\,dz)Q^{\rho}_{\nu}(z,\,dy)\mu_{I}(dx)\right)^{1/\rho} \;(\text{Jensen}) \\ &\leq \left(\int_{\mathbb{R}^{d}\times\mathbb{R}^{d}}|x-w|^{\rho}\,Q^{\rho}_{\mu_{I}}(x,\,dw)\mu_{I}(dx)\right)^{1/\rho} + \left(\int_{\mathbb{R}^{d}\times\mathbb{R}^{d}}|z-y|^{\rho}\,\nu(dz)Q^{\rho}_{\nu}(z,\,dy)\right)^{1/\rho} \;(\text{Minkowski}) \\ &= W_{\rho}(\mu_{I},\,\mu) + W_{\rho}(\nu_{J},\,\nu). \end{split}$$

The claim follows since $W_{\rho}(\mu, \mu_I \curlywedge_{\rho} \nu_J) \leq W_{\rho}(\mu, \mu_I) + W_{\rho}(\mu_I, \mu_I \curlywedge_{\rho} \nu_J)$.

Definition of $\mu \Upsilon_{\rho} \nu$

"Dual" problem :

find $\eta \in \mathcal{P}_{\rho}(\mathbb{R}^d)$ such that $\mu \leq_{\mathsf{cx}} \eta$ that minimizes $W_{\rho}(\eta, \nu)$.

Proposition 6

For $\rho > 1$, if $\mu, \nu \in \mathcal{P}_{\rho}(\mathbb{R}^d)$, then $\inf_{\eta:\mu \leq_{\mathrm{cx}}\eta} W_{\rho}^{\rho}(\nu,\eta)$ is attained by some probability measure $\mu \vee_{\rho} \eta$ which is unique when ν is absolutely continuous with respect to the Lebesgue measure or d=1. If $\rho > 1$ and $\mu, \nu, \mu_I, \nu_J \in \mathcal{P}_{\rho}(\mathbb{R}^d)$, then $\mu \leq_{\mathrm{cx}} \nu \Rightarrow W_{\rho}(\mu_I \vee_{\rho} \nu_J, \nu) \leq W_{\rho}(\mu, \mu_I) + 2W_{\rho}(\nu, \nu_J)$.

Property : $W_{\rho}(\mu \curlyvee_{\rho} \nu, \nu) = W_{\rho}(\mu, \mu \curlywedge_{\rho} \nu, \nu)$ and there exists an optimal transport map between $\mu \curlyvee_{\rho} \nu$ and ν .

• $\mu \Upsilon_2 \nu$ a priori less easy to calculate numerically than $\mu \curlywedge_2 \nu$.

Back in dimension 1

Proposition 7

Let $\mu, \nu \in \mathcal{P}_1(\mathbb{R})$. Let ψ denote the convex hull (largest convex function bounded from above by) of the function $[0,1] \ni q \mapsto \int_0^q F_\mu^{-1}(p) - F_\nu^{-1}(p) dp$. Then, there exists probability measures $\mu \curlywedge \nu$ and $\mu \curlyvee \nu$ such that for all $q \in [0,1]$,

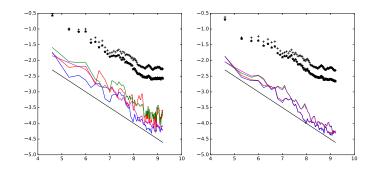
$$\int_{0}^{q} F_{\mu \wedge \nu}^{-1}(p) dp = \int_{0}^{q} F_{\mu}^{-1}(p) dp - \psi(q),$$
$$\int_{0}^{q} F_{\mu \wedge \nu}^{-1}(p) dp = \int_{0}^{q} F_{\nu}^{-1}(p) dp + \psi(q).$$

Moreover, $\mu \curlyvee_{\rho} \nu = \mu \curlyvee \nu$ for each $\rho > 1$ such that $\mu, \nu \in \mathcal{P}_{\rho}(\mathbb{R})$.

Rk: For discrete probability measures μ and ν , ψ (and thus $\mu \curlywedge \nu$ and $\mu \curlyvee \nu$) can be calculated explicitly.

- Introduction
- The dimension 1 case
- Sampling in the convex order in higher dimensions
- 4 Numerical results

Convergence in Wasserstein distance W₂



 $\begin{array}{l} \log(W_2) \text{ in function of } \log(I). \text{ Right : } \underbrace{W_2(\mu,\mu_I \wedge \nu_I)}, \ W_2(\mu,\mu_I \downarrow \nu_I), \\ W_2(\nu,\mu_I \vee \nu_I) \text{ and } \underbrace{W_2(\nu,\mu_I \vee \nu_I)}, \text{ Left : same with "tilde" measures.} \\ \mu = \mathcal{N}(0,1), \ \nu = \mathcal{N}(0,1.1), \ \mu_I = \frac{1}{I} \sum_{i=1}^I \delta_{X_i}, \ \nu_I = \frac{1}{I} \sum_{i=1}^I \delta_{Y_i}, \ \bar{X}_I = \frac{1}{I} \sum_{i=1}^I X_i, \\ \bar{Y}_I = \frac{1}{I} \sum_{i=1}^I Y_i, \ \tilde{\mu}_I = \frac{1}{I} \sum_{i=1}^I \delta_{X_i - \bar{X}_I} \text{ and } \tilde{\nu}_I = \frac{1}{I} \sum_{i=1}^I \delta_{Y_i - \bar{Y}_I}. \end{array}$

An example with explicit MOT

Let $\rho > 2$, $\mu(dx) = \frac{1}{2} \mathbf{1}_{[-1,1]}(x) dx$ and $\nu(dx) = \frac{1}{4} \mathbf{1}_{[-2,2]}(x) dx$. We consider the following MOT problem :

$$\min_{\pi \in \Pi^{M}(\mu,\nu)} \int_{\mathbb{R} \times \mathbb{R}} |y - x|^{\rho} \pi(dx, dy).$$

• For any $\pi \in \Pi^M(\mu, \nu)$, we have $\int_{\mathbb{R} \times \mathbb{R}} |y - x|^2 \pi(dx, dy) = \int_{\mathbb{R}} y^2 \nu(dy) - \int_{\mathbb{R}} x^2 \mu(dx) = 1. \text{ For } \rho > 2,$ Jensen's inequality gives

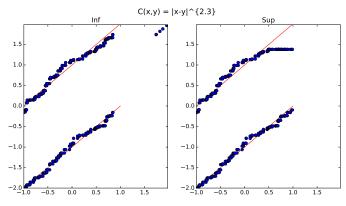
$$\int_{\mathbb{R}\times\mathbb{R}}|y-x|^{\rho}\pi(dx,dy)\geq\left(\int_{\mathbb{R}\times\mathbb{R}}|y-x|^{2}\pi(dx,dy)\right)^{\frac{\rho}{2}}=1.$$

We observe that

$$\pi^*(dx, dy) = \frac{1}{2} \mathbf{1}_{[-1,1]}(x) \frac{\delta_{x+1}(dy) + \delta_{x-1}(dy)}{2} dx$$

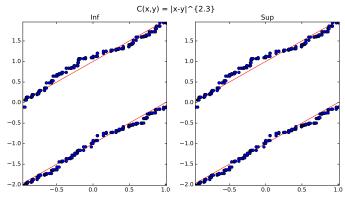
achieves this lower bound.

MOT for $(\mu_I \wedge \nu_I, \nu_I)$ (left) and $(\mu_I, \mu_I \vee \nu_I)$ (right)



 $I=100.~\mu_I=\frac{1}{l}\sum_{i=1}^l\delta_{X_i},~\nu_I=\frac{1}{l}\sum_{i=1}^l\delta_{Y_i}.$ Points with positive probability in the optimal coupling.

MOT for $(\tilde{\mu}_I \wedge \tilde{\nu}_I, \tilde{\nu}_I)$ (left) and $(\tilde{\mu}_I, \tilde{\mu}_I \vee \tilde{\nu}_I)$ (right)



$$I=100.~ ar{X}_{l}=rac{1}{l}\sum_{i=1}^{l}X_{i},~ ar{Y}_{l}=rac{1}{l}\sum_{i=1}^{l}Y_{i},~ ilde{\mu}_{l}=rac{1}{l}\sum_{i=1}^{l}\delta_{X_{i}-ar{X}_{l}}$$
 and $ilde{
u}_{l}=rac{1}{l}\sum_{i=1}^{l}\delta_{Y_{i}-ar{Y}_{l}}$

Comparison on the costs

 $\it I=100$. We have run 100 times the discrete MOT and calculated means and standard deviations of the cost (Optimal cost 1 for the continous MOT) :

	$(\mu_I \wedge \nu_I, \nu_I)$	$(\mu_I,\mu_I\vee\nu_I)$	$(\tilde{\mu}_I \wedge \tilde{\nu}_I, \tilde{\nu}_I)$	$(ilde{\mu}_I, ilde{\mu}_Iee ilde{ u}_I)$
mean	0.7506	0.7319	1.002	1.002
std. dev.	0.2148	0.2148	0.14	0.14

- Few differences between $(\mu_I \wedge \nu_I, \nu_I)$ and $(\mu_I, \mu_I \vee \nu_I)$.
- Equalizing the means really improves the approximation.

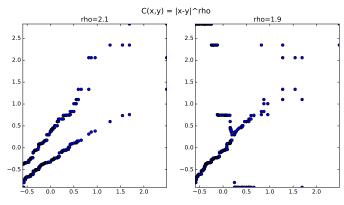
Another numerical example

We consider again the following MOT problem :

$$\min_{\pi \in \Pi^{M}(\mu,\nu)} \int_{\mathbb{R} \times \mathbb{R}} |y - x|^{\rho} \pi(dx, dy),$$

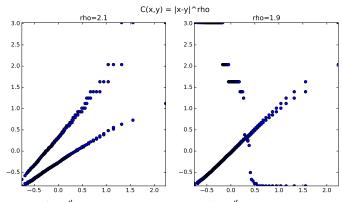
with μ (resp. ν) being the law of exp $\left(\sigma_X G - \frac{1}{2}\sigma_X^2\right) - 1$ (resp. exp $\left(\sigma_Y G - \frac{1}{2}\sigma_Y^2\right) - 1$), with $G \sim \mathcal{N}(0,1)$, $\sigma_X = 0.24$ and $\sigma_Y = 0.28$.

MOT for $(\tilde{\mu}_I \wedge \tilde{\nu}_I, \tilde{\nu}_I)$ (left $\rho = 2.1$, right $\rho = 1.9$)



$$I=100.~ ar{X}_{l}=rac{1}{l}\sum_{i=1}^{l}X_{i},~ar{Y}_{l}=rac{1}{l}\sum_{i=1}^{l}Y_{i},~ ilde{\mu}_{l}=rac{1}{l}\sum_{i=1}^{l}\delta_{X_{i}-ar{X}_{l}}$$
 and $ilde{
u}_{l}=rac{1}{l}\sum_{i=1}^{l}\delta_{Y_{i}-ar{Y}_{l}}$

MOT for $(\hat{\mu}_{l'} \wedge \hat{\nu}_{l'}, \hat{\nu}_{l'})$ (left $\rho =$ 2.1, right $\rho =$ 1.9)



Baker: $\hat{\mu}_{l'} = \frac{1}{l'} \sum_{i=1}^{l'} \delta_{\substack{l' \int_{i=1}^{l} F_{\tilde{\mu}_l \wedge \tilde{\nu}_l}^{-1}(u) du}}, \; \hat{\nu}_{l'} = \frac{1}{l'} \sum_{i=1}^{l'} \delta_{\substack{l' \int_{i=1}^{l} F_{\tilde{\nu}_l}^{-1}(u) du}}.$

I' = 100, I = 10000.

Comparison of the std deviation on the first example

On 100 independent runs.

- $I = 100 \; (\tilde{\mu}_I \wedge \tilde{\nu}_I, \tilde{\nu}_I)$. Mean : 1.002, Std. dev. : 0.14.
- $\hat{\mu}_{l'} = \frac{1}{l'} \sum_{i=1}^{l'} \delta_{l'} \int_{\frac{i}{l'}}^{\frac{i}{l'}} F_{\tilde{\mu}_{l} \wedge \tilde{\nu}_{l}}^{-1}(u) du$, $\hat{\nu}_{l'} = \frac{1}{l'} \sum_{i=1}^{l'} \delta_{l'} \int_{\frac{i}{l'}}^{\frac{i}{l'}} F_{\tilde{\nu}_{l}}^{-1}(u) du$, with

I' = 100, I = 10000. Mean: 0.9981, Std dev.: 0.0148.

An example with three marginals

- Laws : $X_i \stackrel{(d)}{=} \exp\left(\sigma_X G \frac{1}{2}\sigma_X^2\right) 1$, $Y_i \stackrel{(d)}{=} \exp\left(\sigma_Y G \frac{1}{2}\sigma_Y^2\right) 1$ and $Z_i \stackrel{(d)}{=} \exp\left(\sigma_Y G \frac{1}{2}\sigma_Y^2\right) 1$, with $G \sim \mathcal{N}(0, 1)$, $\sigma_X = 0.24$, $\sigma_Y = 0.28$, $\sigma_Z = 0.32$.
- Payoff/cost function : $c(x, y, z) = (z \frac{x+y}{2})^+$.
- BS price ≈ 0.0681 , lower bound : 0.0303, upper bound 0.0856 obtained with $(\hat{\mu}_{l'}, \hat{\nu}_{l'}, \hat{\eta}_{l'})$ (l = 2500 and l' = 25).
- Minimize/maximize

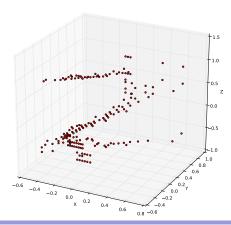
$$\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} r_{ijk} c(x_i, y_j, z_k)$$

under the constraints

$$\begin{aligned} \forall i, j, k, \ r_{ijk} \geq 0, \ \forall i, \sum_{j=1}^{J} \sum_{k=1}^{K} r_{ijk} = p_i, \ \forall j, \sum_{i=1}^{I} \sum_{k=1}^{K} r_{ijk} = q_j, \ \forall k, \sum_{i=1}^{I} \sum_{j=1}^{J} r_{ijk} = s_k, \\ \forall i, \sum_{j=1}^{J} \sum_{k=1}^{K} r_{ijk} (y_j - x_i) = 0, \ \forall i, j, \sum_{k=1}^{K} r_{ijk} (z_k - y_j) = 0. \end{aligned}$$

with
$$\mu = \sum_{i=1}^{J} p_i \delta_{x_i}$$
, $\nu = \sum_{i=1}^{J} q_i \delta_{y_i}$ and $\eta = \sum_{k=1}^{K} s_k \delta_{z_k}$ satisfying $\mu \leq_{cx} \nu \leq_{cx} \eta$.

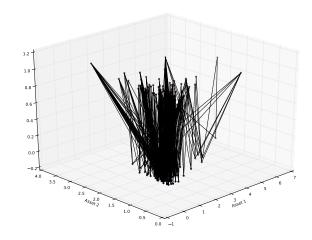
Martingale Optimal transport for $(\hat{\mu}_{l'}, \hat{\nu}_{l'}, \hat{\eta}_{l'})$ (min)



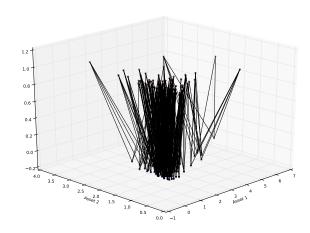
An example in dimension 2

- (G^1, G^2) : centered Gaussian vector with covariance matrix $\begin{bmatrix} 0.5 & 0.1 \end{bmatrix}$
 - $\Sigma = \begin{bmatrix} 0.5 & 0.1 \\ 0.1 & 0.1 \end{bmatrix}.$
- μ : law of (X^1, X^2) with $X^{\ell} = \exp(G^{\ell} \Sigma_{\ell\ell}/2)$, $\ell \in \{1, 2\}$.
- ν : law of (Y^1, Y^2) with $Y^{\ell} = exp(\sqrt{2}G^{\ell} \Sigma_{\ell\ell}), \ell \in \{1, 2\}.$
- Payoff/cost function : $\max(Y^1 X^1, Y^2 X^2, 0)$ (best performance if positive).
- $\tilde{\mu}_I = \frac{1}{I} \sum_{i=1}^I \delta_{(X_i^1 + 1 \bar{X}_I^1, X_i^2 + 1 \bar{X}_I^2)}, \, \tilde{\nu}_I = \frac{1}{I} \sum_{i=1}^I \delta_{(Y_i^1 + 1 \bar{Y}_I^1, Y_i^2 + 1 \bar{Y}_I^2)}$
- BS price \approx 0.345, lower bound (on 100 indep runs): mean 0.2293 (std. dev 0.0848), upper bound mean 0.4111 (std. dev 0.1422), obtained with $(\tilde{\mu}_I \downarrow_2 \tilde{\nu}_I, \tilde{\nu}_I)$, I=100.

Martingale Optimal transport for $(\tilde{\mu}_I \downarrow_2 \tilde{\nu}_I, \tilde{\nu}_I)$ (min)



Martingale Optimal transport for $(\tilde{\mu}_I \downarrow_2 \tilde{\nu}_I, \tilde{\nu}_I)$ (max)



Conclusion

- The methods that we have presented, enable to calculate with a MC method at the same time option prices, and their bounds on all other models sharing the same marginal laws.
- The accuracy of the price bounds (maybe not so important in practice) is limited by the dimension of the linear programming problem.
- A possible direction is to develop approximated linear programming solvers (Benamou, Carlier, Cuturi, Nenna, 2015 in the OT case).